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I. INTRODUCTION

This paper, establishes the parameters important to the stability of
a boundary layer flow over a yawed spinning cylinder in a uniform stream.
It will be shown that transition occurs asymmetricaliy in general and this
asymmetry can be important for the prediction of aerodynamic forces and

moments (e.g., the Magnus effect). Instability of the steady-state

boundary layer flow is determined using "sma!l" disturbance theory. Although

this approach is strictly valid only for the calculation of the conditions
for "stability in the small", experimental data indicate that in many
problems, it is useful in the prediction of transition to turbulence.

The stability of the boundary layer with respect to "small" dis-
turbances has been investigated by many authors, perhaps most notable
among them, Orr,l Sommerfeld,2 Tollmien,3 Schlichﬂng,4 Lin,5 and Squire.6
The basis for the present work can be traced primarily to the work of Lin,
Squire, and Kue'rhe.7

There has been |ittle experimental data generated on the boundary
layer properties of spinning bodies at small angles of attack. Thorman8
investigated experimentally the boundary layer on an ogive cylinder but
did not make sufficient measurements to map the transition line. [Furuya,
Nakamura and Kawachi9 measured the momentum thickness on a spinning bodv
of revoluftion, which was unyawed, for various values of spin rate. Their
data, however, are not useful here, since the body was in close proximity

to the wall of the wind funnel and hence a pressure gradient was present.

It is interesting to note that their results do agree qualitatively with

those presented here.



2. EQUATIONS OF MOT!ON - STEADY-STATE ANALYSIS

Consider a semi-infinite rotating circular cylinder of radius, R,
with angular velocity, w, situated in a parallel, incompressible flow,
with free stream velocity, V_, at an angle-of-attack, a. The coordinate
system used is fixed to the body but does not rotate with it. The origin
is located at the leading edge of the cylinder, x increases in the direc-
tion of the flow, y normal fo the body and z in the azimuthal direction.
For the boundary layer flow the curvature of the body will be neglected,*
as well as the pressure gradient in the x direction. The steady state
boundary tayer equations of moTionIO for this body fixed system (shown in

Figure 1) are

2
Ug_i+vg_u+w%§_:va_l"_ (2-')
Y 3Y2
2
QAW W w1 dp,3%W (2.2)
ax ay 9z p 9z 2
ay
du , 3v 3w _ (2.3)
Ix y 3z

where u, v, and w are the velocity components in the x, y, and z direc-
tions respectively, p the static pressure, and, o the density.

The radius of curvature of the body can be neglec+éd when it, and
the length from the leading edge of the body, are large compared 1o the

boundary layer thickness. Away from the leading edge and for large

*As Lin5 points out, the primary effect of curvature on a convex surface
(which is the case here) is to modify the pressure gradient. In the
equations themselves, an error 0(8/R) is introduced which shall be neglected.
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Reynolds numbers both of these assumptions are satisfied.
There are three important nondimensional groups of parameters for
this flow, the first group is the Reynolds number based on free stream

velocity, V_, and L, where L is the distance from the leading edge.

R = e, ' (2.4)

The second and third groupings are

Voo
* =
w o (2.5)
and
a¥ = 25 (2.6)
where w* will be called the reduced Rossby number (the Rossby number being
the ratio V_/wR; and, a* will be called the modified angle-of-attack.
The boundary conditions for these equations are given by slender body
theory as

u(0) =-v(0) =0 w(0) = wR
a2 .z
uty/8)> v_(I - 7—4 viy/8) - 0 wly/$8) > 2V asin(g) as y/§ » o

The pressure gradient, Pz’ is that of the external potential flow, and is

for small angles-of-attack,



4pa2Vw2 7 2 _
P, = - —g—sin(® cos(®. (2.7
Using this function, equations (2.1) - (2.3) can be solved for the velocity

field. |t is this case that is treated in the literature and for which the

solutions will be given below.

2.1 Solution

Equations (2.1) - (2.3) have been solved by Mar*rinIo by writing u, v,
and w as perturbation series in the quantities a and wR/V, both being small
for most applications. This formulation leads to the following solutions

in terms of the nondimensional parameters

* 2
%__: foln) + 2a;f1(n)cos(%0 + Bé fz(n)SiN(%J + a; Lf3(n)
oo L
(2.8)
2z
+ fq(T])COS(‘R—")] + ...
CX.*
v | * z 2 4 v_
V" = [nfo) - fo()] + a,gpln)cos(x) + @91(71)5'” Y- V_x
(2.9)
Te= 1= (= 20uisingn) + ajhgndcosD) 4 (2.10)
where
o = X 1 _wx =X Vw—x
) R ’ w;(: Voo n X v

is the Blasius similarity variable. A tabulation of the functions appearing

in equations (2.8), (2.9) and (2.10) can be found in reference 10. Here '

5



denotes differentiation with respect to n. It is clear that the criteria
|

for neglecting higher order terms are both a; and ;x-be small (i.e., << 1),
L

since all other values in the above equations are bounded by one. The

consequences of tThis are more stringent than those imposed by the require-

ment that o and uuR/Vc0 be small.



3. STARILITY ANALYSIS

For the purpose of the stability analysis only terms of first order in

a; are retained” in the steady-state solution, which becomes

-)(-
%_.= fo(n) + 2a fl(n)cos(-d + % fz(n)sin(%J (3.1
W R z wR * wR
v - .‘\*t+ (20sin %) - -\C)f(')(n) o $m hg (n)cos (£) (3.2)

where U and W represent the steady-state laminar boundary layer velocity

I/2

profiles on the cylinlier ( , being O(R , Will be neglected).

3.1 Equations of Motion

The Navier-Stokes equations, including Time rates of change,+ and,
nondimensionalizing velocities on free stream velocity, Vm, coordinates
on boundary layer displacement thickness, &, pressure on pvi, and Time on

§/V_ become

AA AN

- ~n [ - - A
~ ~ ~ A D — A~n + An ~n - ~ R
ug + uus + vuy + wus Re (uxx uyy + uzz) Px (3.3
8
Vi b Qus b s+ Wvs = o (U2n 4 uan 4 vss) - Po (3.4)
t X Y z Re XX vy y
§
- ~n an ~an | " N ~ A
~ ~ ~ A= L an + PN An - ~ .
wi + uws + va + ww> Re (wXx wyy + wzz) PZ (3.5)
§
0s + VA + wa =0 (3.6)
X y z
* aE
Terms involving ———-(n 2 2) have also been neglected.

2

.i.
Where curvature has been neglected.



where the circumflex designates the nondimensional value of the variable.

3.2 Zero Angle-of-Attack

First consider the case of zero angle-of-attack.

-~ Uo
u=gotou¥ o vo= v
o0
wo Po
W= + W¥; p = ——5'+ p*
(e <]

In this case

(3.7a, b)

(3.7c, d)

where UO and wo are the steady-state solutions (equations 3.! and 3.2 with

L

the form of a three dimensional disturbance

o = u(§)ei(y§ + gz - ct)

i(yx + Bz - cf)

v¥ = v(yle
w¥ = !(9)e|(yx + Bz - ct)
p* = E(wel(yx + Bz - ct)

Here vy and B are assumed real and c complex.

a¥* = 0), and the asterisked quantities denote the perturbations which have

(3.8a)

(3.8b)

(3.8c)

(3.8d)

The velocities and pressure are considered as the sum of a steady-

state component and a perturbation. The perturbation assumed is periodic

in The spatial variables Q, and 2, Time %, and functionally depends on

the distance normal to the body y. This type of disturbance is seen in



the excel lent photograph by Brownll in wh[qh.fhe disturbance on a spinning
body at zero angle-of—-attack closely resembles the classic Tollmein-
Schlichting waves normal to the relative velocity vector due to both the
circumferential and free stream velocities. Substitufting equations (3.7),
(3.8), and Uo and WO gotten from equations (3.1) and (3.2) into equations

(3.3) - (3.6) yields
VIt - 268yt oy = iRe(Sy[(Ql -Cp' - adv) - Q'] 3.9

where the primes denote differentiation with respect to Q, af = y2 + g2,

Q1 = UO/%,+ BWO/YMm,amd Cy = ¢/y. The boundary conditions are

v(0) = v'(0) = 0 x'~e_a19 for § 21 (3.10)
and
B wR _
010 = 2= Q;(1) = 1.0 (3.11)

This boundary value problem has been treated in the literature, with
the exception of the boundary conditions on Q. Equation (3.9) is
transformed into that solved by Lin5by utilizing the following relationships;

similar to those used by Kuethe7

o B

-Q__:l_'YVOo
B wR (3.12a)

1 - 222

Y Voo



B wR
- G-3v
Cy —'Tffjiiﬁfh (3.12b)
Yy vV,
R =Y _ () -B8BuwR
Rea a (1 ” Yx)Red (3.12¢)

Substituting equations (3.12) into (3.9) yields

virtt - 203yt 4 aly = ia1§66 C@ - Cow' = ady) - 31T .13
with the same boundary conditions on v as before, but with the boundary
conditions 91(0) = 0, Qy(1) = 1.0.

Thus, equation (3.13) is the Orr-Sommerfeld equation for the flat
plate flow stability problem since §, = f! . It has been studied

extensively and an approximate solution for the minimum critical Reynolds

number , ﬁeI , based on displacement thickness can be written as

R = wall (3.14)

where 61 is the dimensionless wave speed determined by the condition for

neutral stability:

30, 220,
_ _ - T ('é-n—‘)wa”C]_ (;];—)élzal
Q,(Cy) = .58 = - (3.15)
a0y
Bn8,=C,

10



This equation has been solved numerically and yields a value of
C; = .4136, which gives a minimum critical Reynolds number based on dis-
placement thickness ﬁel = 485. However, inverting equation (3.12¢c) for

the Reynolds number yields

|+ (%)2
Re1 = 485 - B uR (3.16)
minimum Y Vo
critical

This Reynolds number (based on displacement thickness) is minimized for the

condition
B _ uR
7 V. (3.17)
giving
R o485 (3.18)
el wR
minimum b+ (2
critical o

This equation is plotted in Figure 2 and indicates that the spin rate
of the body is a large factor in determining the stability of the boundary
layer flow. Although the Reynolds number is plotted to a value of wR/V = I,
the results will be questionable when the inverse reduced Rossby number,
[/w¥*, is not smal{.

In this case the ratio given by equation (3.17) yields the minimum
value and implies that the disturbances most likely to be amplified

> ->
first will propagate in the direction of the velocity vector Wi + wRk

11
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This is indeed the case indicated In Brown's photograph, and is consistent

with what would,be predicted by Squire's theorem.

3.3 Small Angles-of-Attack - Formulation

Now consider the case of small modified angle-of-attack, a¥*, which
introduces significant complexity into the equations. The steady-state

solution is written as

U=u_+ aEUl (3.19a)

W= W+ a¥W) ' ' (3.19b)
where

z @ .z

Up = 2V_fi(nlcos (7) + ;g fa(n)sin (R) (3.20a)

and
R .1t z Ver R z
W = sztfo(n)SIn (ﬁ) +F€th0(n)cos (-R—). (3.20b)

As before, assume a disturbance given by equations (3.8) and substitute

info equations (3.3) - (3.6). Neglecting terms O(Re_'/z) and fetting
L
U W U; Wy
x-. 0, B O *x . B 7. A _C
W=y tov to Grryy)sand, G =2 (3.21)

yields

13



yreee - 2a§¥" + a:! = iRe y[(Q? - 61)(¥" - af!) - Qf''v] (3.22)
8

The difference between this equation and that for the zero angle-of-
attack case is the angle-of-attack and B/y dependence of QT. In the limit
of a; + 0 this reduces to the equation as for the zero angle-of-attack

case.

The boundary conditions are

A
v(0) = v'(0) =0 ¥'~e W ror §21 (3.23)

3.4 Numerical Solution

The function QT is not in general monotonic and for some values of
ﬁ-exhibifs overshoot and/or inflection points (see Figure 3). Because of
this, the analytic technique of Lin used in the zero angle-of-attack case
does not necessarily apply. Intuition would suggest for small o* and |/w*
that the direction of propagation of the most unstable mode would be

approximately given by - %B and the height of the critical layer would not

oo

change much. If this is the case, then Lin's approximate technique should
yield good results and would provide a rapid way of solving equation (3.22).
However, as poinfed out in the [itferature (e.g., Rosenheadlz), inflection
points can play an important and perhaps even dominant role in the stability
question. In fact, Rosenhead suggests that the most unstable mode may be

in the direction in which the inflection point corresponds to Q? =0,

which in this case, would not be near - wR/V_. The height of the critical

layer wauld also be greatly changed so lin's approximalion would not be

expected to work.

14
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To settle this question, equation (3.22) was solved numerically by a
standard finite difference scheme for two point boundary value problems.
The procedure consists of searching in a; and B/y for the minimum critical
Reynolds number at each azimuthal position. The results are shown in
Figures 4 through 9 for typical values of the parameters.

Figures 4 and 5 indicate a marked variation in the minimum critical
Reynolds number as a function of azimuthal angle. Included on these
figures is the analytic solutions described in the next section. Figure
6 shows a typical neutral stability curve. There is considerable varia-
tion in the shape of the neutral stability curve depending on B/y and
azimuthal position.

The variation in the direction of propagation of the most unstable
mode is indicated in Figure 7 for a typical case. It can be seen that the

excursion from the - %B-direc+ion is not substantial. This suggests that

(> o]

an approximate analytic solution with 8/y = - %B-should yield reasonable
results since, as can be seen in Figure 8, the minimum critical Reynolds
number variation near this value of B/y is small. In addition the height

of the critical layer, as indicated by the propagation velocity of the

disturbance, EIR.does not vary substantially, cf Figure 9.

3.5 Approximate Solution

The results of section 3.4 indicate that an appropriate solution such

as that of Lin should yield reasonable results. Introducing the transforma-

tions

16
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Q¥ - B wR
- 1 Y
Q; = o (3.24a)
B8 z, _ B wR _
I + 2a Y si (R) Y v
8 wR
Cy By Ve (3.24b)
B i (&) - BuR )
| + 2a Y sin (R) Y V_
= R
R =X (1 +2a2sin & - BuRyp (3.24¢)
e6 o] Y R Y V°° ed

and substituting into equation (3.22) gives
XER! 2,0 b I I r 2 a1
v = 200y'" 4oy = iR LQp - Cy' - a V) = Q v] (3.25)

with the same boundary conditions on.v [equation (3.23)] but with 61(0) =0
and 61(I) = |. The solution for the approximate minimum critical Reynolds
number is given by equation (3.14).

Due to the introduction of angle-of-attack, the solution is three
dimensional in character, and a simple similarity solution no longer exists.
That is, the steady-state solution no longer depends on 9 alone, buT now
depends on %xand z as well. In equation (3.15) the calculation of the
wave speed no longer can be accomplished independent of position on the
body.

These equations are solved by assuming that the effect of a small
angle-of-attack on the value of ; for the critical height, and the

associated wave speed C, will be small, hence

23



~

Yy =Yg+ agy (3.26)

which yields the following expression for the wave speed'3
_ [.4136 - .1307a z(y L + ( )2] + o e(y )
C, = (3.27)
|H—ﬂ-a$anm

where the functions &, € are given in reference |3, and iois The value
of Q corresponding fo the zero angle-of-attack case. The minimum critical

Reynolds number in this case can be written as

L3321+ ( )2] + a*e'(O)

ea I c4 Vo [l + ( )2 - 20 %E—SI (ﬁJJZ
critical (3.28)
As can be seen in Figures 4 and 5 this approximate solution yields
gratifying results. In addition, Figure 10 illustrates the dependence of
the minimum critical Reynolds number on the two parameters o* and 1/w¥.
The introduction of an angle-of-attack makes the boundary layer more suséepfible
to the effects of spin. It should be notec here that for the iarger values
of o¥ and |/w* this data should be considered only qualitative in nature
due to the assumptions made.
Preliminary experimental results™> indicate that the "transition line"

is indeed skewed with respect fo the plane of the angle~of-attack in the

same ganeral way as predicted by this analysis.

3.6 Magnus Effect

The "small disturbance" analysis suggesis Hhal the 1ransition of the

boundary from laminar to furbulent flow occurs asymmctrically which would

24
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result in an asymmetric growth of the boundary layer (Figure 1l). The
The Magnus effect resulting from considering the potential flow about

"new" body, whose effective shape includes the displacement thickness,

a
can be defermina2d using slender body theory.

The velocity potential can be written as
¢ =0 + ¢ (3.29)

where @i is the inviscid potential solution and ¢ is the perturbation

2

potential due to> the boundary layer. Assuming g—g-is small, the perturba-
ax2

tion potential must satisfy only lLaplace's equation (in polar coordinates)

at each station, x, with the boundary conditions

291 =0 294 = oufflow velocity = Vmgé- (3.30a, b)
y*w Y =0 ox

where A is the boundary layer displacement thickness and %é—is the slope of
the effective body shape.

The boundary layer displacement thicknesses grow at different rates
for Iaminarlo and TurbulenT|3 flows. For the turbulent case the growth
was assumed to follow that of a boundary layer on a flat plate. Although
not entirely adequate 1t was felt that this was sufficient to give a
qual itative indication of the effect of the skewed transition line.

The transition from laminar to turbulent flow is assumed to take
place at a Reynolds number proportional to the minimum critical Reynolds
number. This is not strictly correct since in aciual practice the transi-

tion depends on many factors (¢.g., free stream furbulence level, Surface

26
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roughness, etc). However, this will tend only to shift the results in terms
of Reynolds number without affecting the qualitative behavior, as will be

seen below.
Laplace's equation with the above boundary conditions yields a solu-

tion for the perturbation potential which can be used to calculate the

pressure coefficient. The pressure coefficient is given by

2R oI . z
CP = ?—-3§-S|n (ﬁd (3.31)
where
_ 2w 3A . z z
I = fo 3% Sin (R d (@) (3.32)

Integrating the pressure coefficient fo obtain the Magnus force and moment

yields:
F = -2R2q_I(L) (3.33)
mag ©
27 . z z
= -7R2 - Zyd(&
Miag = ~2R%aLICLIL [y Atisin (RdR)] (3.34)

since the value of the integral I is zero at x = 0.
Integrating equations (3.33) and (3.34) (exactly) for the cases of
fully laminar or fully turbulent boundary layer flow, yields the same

. 10 .
results as Martin. For the laminar case

28



T

41.3| wR 2 . S )
F = q.o L : (3.35)
mag NL *® v,
v
Moo= 28.78 48R 2 (3.36)

and for the turbulent case

L2 (3.37)

-n
1

= o 22
magSVqu Voo

M - L2 .3
mg " s @ Va .39

For the more general case, the analysis is carried out numerically.
The Magnus force is shown in Figure |2 for a range of Reynolds number a
function of angle-of-attack calculated using equation (3.33). The Magnus
torce predicted with an asymmetric mixed boundary layer is somewhat greater
than that predicted with Martin's theory.

The most striking result is in the behavior of the center of pressure

of the Magnus force (Figure 13).

X oo = —ad (3.39)

The center of pressure predicted on the bases of the asymmetric transition
can be well forward of the fully laminar case. Due to the uncertainties
in the parameters which determine the actual transition Reynolds number
direct correlation with experimental data is not possible; the Trends,

however, agree quite well.l4’l5

29
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These results can only be used as an indication of the effect Reynolds
number variation has on the Magnus center of pressure. |If the actual
transition Reynolds number based on body length is, for example, 200,000
at zero spin and zero angle-of-attack (as opposed to the assumed 80,000
above), then the behavior of the center of pressure for a given free
stream Reynolds number and angle-of-attack changes. A comparison can be
seen in Figure 14, where the center of pressure location is plotted for
an assumed fransition Reynolds numbers of 200,000. A very similar be-
havior is observed as in the previous case - the primary difference being

the magnitude of the free stream Reynolds number for each curve.

Acknowledgements: The authors wish to thank Mr. John Gary of the National

Center for Atmospheric Research for making available the computer program
used to solve the Orr-Sommerfeld equation. More details of this program

are available in reference 16.
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